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Locafization Models of 

Recently, Ghirardi, Rimini, Weber, and Pearle have proposed a stochastic 
modification of the Schrrdinger equation which dynamically suppresses coher- 
ent superpositions of macroscopically distinguishable states and so avoids the 
infamous cat paradox. We show that the modified dynamics reduces the state 
vector completely only in the limit of infinite time, and therefore, for any finite 
time t, no objective local property can be meaningfully assigned to measurement 
outcomes. Since a physical mechanism giving rise to stochastic spontaneous 
localizations of the state vector is lacking, we argue that the model (however 
heuristically interesting) turns out to be ad hoc. Finally, we discuss consequences 
of this latter feature in association with the elusiveness of the two new 'constants 
of nature' appearing in the model. 

1. I N T R O D U C T I O N  

The relation between classical and qua n t um mechanics constitutes one 
o f  the foundat ional  problems in the interpretat ion o f  quan tum theory. This 
problem is part icularly well exemplified in the quan tum measurement  
process, where an a tomic  system (S) interacts with a macroscopic  appara-  
tus (A). In  such a case, the Schr6dinger equat ion gives rise to linear 
superposit ions o f  macroscopical ly  distinguishable states for the correlated 
system S + A. The embarrassing implication seems to be that  a complete 
derivation o f  the definite and separable (local) character  o f  macroscopic  
objects f rom the principles o f  quan tum mechanics becomes impossible. 

The ' o r thodox '  response to the problem was to introduce into the 
theory an addit ional assumption,  the projection postulate,  according to 
which the coherent  superposit ion state is reduced " in to  an eigenstate o f  the 
dynamical  variable that  is being measured"  (Dirac,  1947, p. 36). There has 
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been developed, however, during the years a widespread agreement about 
the fact that the orthodox solution is inadequate. In particular, it has been 
realized that the projection postulate requires the acceptance of a splitting 
between measured system and measuring apparatus (or between quantum 
and classical) which turns out to be 'suspiciously shifty' (e.g., Bell, 1990). 
Furthermore, the projection postulate is incompatible with the Schr6dinger 
equation of motion and its importation into the axiomatic structure of 
quantum theory induces a peculiar duality with respect to the time evolu- 
tion; while Schr6dinger's dynamics is linear and deterministic, the projec- 
tion postulate expresses a nonlinear and stochastic behavior for state vector 
reduction. One may conceive, then, that a natural reconciliation of these 
two mutually incompatible types of evolution may be obtained by consider- 
ing the possibility of nonlinear and stochastic modifications of the standard 
Hamiltonian dynamics. 

2. STOCHASTIC DYNAMICAL STATE VECTOR REDUCTION 

Recently, Ghirardi, Rimini, Weber, and Peafle (GRWP) have pro- 
posed such a modification of the usual theory in which state vector 
reduction is described as an objective physical process. The term 'objective' 
refers to the authors' refusal to attribute a peculiar role to the observer or 
to accept the 'shifty split' between quantum and classical behavior in 
micro-macro interactions. Instead, the GRWP framework aims at con- 
structing a single fundamental dynamics governing all phenomena by 
unifying the two contradictory types of evolution we discussed above into 
a single propagation law. Such a monistic description offers also the 
possibility of ascribing individual reality to the wave function as corre- 
sponding to the state of a single system in nature. 

As one might expect, the GRWP unified dynamics restricts the abso- 
lute validity of Schr6dinger's equation. The latter is regarded as the 
limiting case of a more general equation of motion which leaves the 
evolution of systems in the quantum domain practically unaltered, but 
which aims at suppressing the embarrassing superpositions of differently 
located states at the macroscopic level. The elimination of coherence is 
supposed to occur dynamically at the individual level of description accord- 
ing to an intrinsically stochastic and irreversible dynamics which induces 
spatial spontaneous localizations on the wave function. 

The idea of spontaneous localization has been formulated in two main 
approaches. The earliest and most intuitive approach (DSL) introduces 
finite stochastic changes for the state vector in the form of discontinuous 
jumps occurring around appropriate positions (Ghirardi et al., 1986). For 
this reason, this kind of stochasticity has also been called a 'hitting' 
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process. In the more refined continuous approach (CSL) the sudden jumps 
are replaced by a continuous stochastic evolution--a sort of Brownian 
motion for the state vector--in Hilbert space (Pearle, 1989; Ghirardi et al., 
1990). The CSL model is more general and powerful. However, we first 
consider the DSL type of dynamics because of its more immediate physical 
content. 

2.1. Discontinuous Spontaneous Localization 

The basic assumption underlying the DSL model is that any particle, 
whether isolated or part of a physical system, is subjected at randomly 
distributed times to approximate spatial localizations (hittings) which act 
against the expansion of the system's wave function due to the Schr6dinger 
evolution. As a consequence of a localization around a point x in physical 
space (we consider a one-dimensional case for simplicity), an initial wave 
function [W) representing a particle in position basis collapses instanta- 
neously into a new wave function ]~x ) according to, 

I 'e>--, I'ex > = I,I,x II 
(1) 

where q is the position operator of the particle undergoing the localization 
process and a is a parameter of length dimensions whose meaning is that 
1/v/a represents the accuracy (or width) of the localization around the 
'hitting center' x. The characteristic localization length 1/x/~ is assumed to 
take the value 10 .5 cm. 

Equation (1) shows that the GRW discontinuous approach consists in 
multiplying the initial wave function by a Gaussian (jump) function which 
is distributed around x with spread 1/x/~. In turn this multiplication 
corresponds to the effect of an approximate localization: if the particle is 
initially already located within an interval 1/x/~ around x, its wave 
function is well localized and therefore remains practically unaltered by the 
hitting process; if, on the contrary, the initial wave function spreads over a 
distance larger than the characteristic localization length, it is compressed 
by the process. 

The probability density for such a hitting to occur at any particular 
point x is assumed to be 

,,,(x) = Ile,  II = (2) 
Thus localization processes are most likely to appear at those places where 
the initial wave function is largest. Note that the GRW probability 
prescription is analogous to Born's probability rule for the outcomes of a 
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measurement, in that relation (2) ensures that hittings occur with higher 
probability at those regions where in standard quantum mechanics there is 
a higher probability of finding the particle. 

Finally, it is also assumed that hittings occur at random times, 
according to a Poisson distribution, with mean frequency 2 = 10 -16 sec -1 
and that in the time interval between two successive hittings the state vector 
evolves following the Schr6dinger equation. 

In the DSL approach just described, how the reduction mechanism 
works is quite transparent. As explained, it is incorporated in the basic 
principle of the DSL dynamics. The repeated application of process (1) 
with the probability rule (2) strives to suppress coherent superpositions of  
macroscop_jcally distinguishable states separated by a distance much larger 
than 1/~/a to one of its components. The probability that a particular 
component survives is proportional to its weight in the initial superposi- 
tion. This guarantees that the probabilistic predictions of the orthodox 
measurement theory are reproduced. More precisely, as we shall see, they 
are reproduced up to small but irreducible anomalies akin to the anoma- 
lous spontaneous localizations. 

2.2. Continuous Spontaneous Localization 

The CSL model, based on the consideration of  continuous diffusion 
processes in Hilbert space, avoids the physically unsatisfactory instanta- 
neous changes of the state vector, formulates the stochastic part of the 
evolution principle through a single unified equation, and preserves the 
symmetry properties of the state vector in the case of systems with identical 
particles. In this formulation, the usual Hamiltonian dynamics is subjected 
to a non-Hermitian, randomly fluctuating potential which depends upon a 
set of white noise functions {w(x, t)}, that is to say, tiny Gaussian random 
processes, coupled to a set of self-adjoint commuting operators {A(x)} 
whose joint eigenvectors (as explained shortly below) represent the density 
of particles around x. 

The state vector obeys a linear stochastic differential equation of the It6 
type 

dl ew(t)>= --iHl ew(t)> +[f dx A(x)w(x, t)-- y f dx A2(x)ll w(t)> (3) 

with the random functions w(x, t) satisfying the following expectation 
values: 

(w(x ,  t ) )  = O, (w(x ,  t)w(x',  t') ) = 76(x - x ' )6(t  - t') (4) 

Thus, while w(x, t) is permitted to fluctuate positively as well as negatively 
with equal likelihood, its fluctuations tend to be statistically correlated 
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through the parameter ? which controls the strength of  the stochastic 
process. It is interesting to note that under an appropriate choice of  7 and 
in the infinite-frequency limit (2 ~ m, a ~ 0 )  the discontinuous process (1) 
can be shown to transform itself into the continuous process (3) (Nicrosini 
and Rimini, 1990). From this point of  view equation (3) acquires an 
immediate physical content as describing a succession of  'tiny spontaneous 
localizations' which continuously strive to reduce the state vector into one 
of  the common eigenstates of  the set of  commuting operators {A(x)}. 

In effect, the operators A(x) determine, for  different values of  the 
parameter x, the eigenmanifolds on which reduction takes place. Their 
specific form, to so-called 'preferred basis, "z is assumed to be defined by 

_ _(ay/2 ( 
A(x) \ - ~  ] j dq nt(q)n(q)e-'~(q- "2/2 (5) 

where n*(q) and n(q) are the creation and annihilation operators for a 
particle at point q in physical space. Then the eigenvalues of  A(x) can be 
taken as representing the average number of particles contained within a 
sphere centered at x with volume of  the order of  a -3/2 and radius a-1/2 
Particle number (or  macroscopic densities) is thus the proposed carrier for 
reduction in CSL. The consequence is that a state vector in a superposition 
of  states describing a macroscopic collection of  particles in different places 
separated by a distance >> 1/v/-a will reduce to a state with a definite 
number of  particles. The particular eigenstate [~P,,(t)) = ]c~i) into which the 
CSL dynamics drives the state vector is determined by a specific realization 
w/(t) of  the Brownian process. 

Provided that different sample functions we (t) generate different norms 
for GRWP, in order to get a consistent theory, resort to an 
assumption parallel to the one made within DSL for the probability density 
of  the hitting positions. They assume that the probability for a specific 
realization of  the stochastic process wi, or equivalently of  the state vector 
[~w(t)>, is not the 'raw' one Praw[Wi] associated with the white noise 
distribution of  equation (4), but is given by the 'cooked' probability Pc[wi] 

2Because state vector reduction in the GRWP model is regarded as a physical process that is 
actually taking place, the choice of the preferred reduction basis is restricted by physical 
considerations. For example, if one chose momentum as the reduction eigenmanifolds 
(Benatti et al., 1988), then the internal motion of semirigid bodies would be massively 
disrupted by the reduction process, due to the ensuing wide position spread. This and other 
considerations of a mathematically inspired nature point toward the GRWP choice for a 
position reduction basis, as exhibited in (5). Clearly, the selection of a preferred basis affords 
a certain economy to the model; it makes possible the elimination of the two types of physical 
evolution. The price to pay, however, is that Lorentz invariance does not rest comfortably 
with the idea that position enjoys a special role in the space-time manifold (Karakostas and 
Dickson, 1995). 
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[as Pearle (1989) explains], which depends nonlinearly on the state vector 
at time t according to 

Pdw,] = Prow[W,] l l l vw(o  >tl = (6) 

The probability rule (6) makes, for a given P~aw[Wi], state vectors with large 
norm to weigh more, i.e., more likely to occur, in measurement situations. 
In other words, according to this prescription, the most probable realiza- 
tions o f  the stochastic process w(x, 0 are those which guide the evolution 
of  tW) in such a way that the state vector becomes localized around those 
positions x where [Wx l is large, while avoiding regions where [Wx [is small. 

3. STOCHASTIC LOCALIZATION AND INDEFINITENESS OF 
MEASUREMENT OUTCOMES 

To explain how the CSL stochastic evolution continuously strives to 
reduce the state vector into one of the common eigenmanifolds of the 
operators {A(x)}, we consider a simple quantitative example in which only 
one operator A appears in equation (3), i.e., 3 

dlWw ( 0 )  = - iHlVw ( 0 )  + [Aw(O - ~A 2 lIW~(t) ) (7) 

If  we disregard the Hamiltonian part, since we want to study the pure 
reduction properties of the CSL dynamics, the solution of equation (7) is 

ludB (t)) = exp[AB(t) - 7A 2t] IV(0) ) (8) 

where B(t) is a Brownian motion function associated to the white noise 
potential through 

B(t) = w(t) dt (9) 

with 'raw' probability density 

1 _  
Praw[B(t)l = e ~2~2,t (10) 

N being a normalization factor. 
The change in the notation for the state vector from IqJw(t)) used in 

equation (7) to IquB(t)) underlines the fact that in the Brownian case the 
state at time t does not depend on the specific sample function w,. in the 
interval (0, 0, but only on its integral B(t) of equation (9). 

3For simplicity we deprive A of its physical meaning and treat it as a purely mathematical 
object in discrete space. 
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Let us further assume that the operator A is spanned by only two 
eigenmanifolds Mz, Mr with eigenvalues l, r corresponding to macroscopi- 
cally different outcomes, so that the initial state vector of the system under 
measurement has the form 

Iv(o)> = t [~ ,  > + R[% > (11) 

Then, the time evolution of this two wave-packet system can be written, 
according to equation (8), as 

]wB(t)> = Z exp[lB(t) - 7/2t]lW,) + R exp[rB(t) - 7r2t]]W~) (12) 

where the sum of the two state vectors at time 0 becomes, at time t, a state 
vector which is the sum of the two evolved state vectors. 

The solution of  equation (12) for I B(t)> depends upon a particular 
realization of the Brownian motion B(t) that drives the state vector. In the 
absence, however, of  any knowledge of  the actual B(t), we resort to the 
cooking prescription (6), which assigns the following probability distribu- 
tion to the Brownian process at time t: 

Pc[B(t)] = Praw[B(t)] IIl B(t) ~ rl 
1 2 = ~ { [ L [  exp [B(t)-21Tt]227t +[RI  2exp [B( t ) -2rTt]2~ 

2~t 3 (13) 

In the derivation of Pc we have used the approximation that the 
squared norms of  the two packets are uncorrelated, i.e., that they 
behave precisely the same way as the squared amplitudes at two distant 
points. 

According to equation (13), the most probable values of B(t) occur 
when either or both exponents in (13) are small, i.e., when the following 
conditions are satisfied: 

IB(t ) _ 217t I < (27t) 1/2, In(t ) _ 2rTt ] < (270 1/2 (14) 

It is evident from relations (14) that the Brownian process B(t) fluctuates 
with overwhelming probability around an interval of  width (27t) 1/2 cen- 
tered on either the value 217t or the value 2rTt. 

When, for instance, B(t) takes a value near 2ryt, the norm of the IWr ) 
packet grows exponentially with rate exp(r27t) 

(Wr [tP B ( t) ) ~- e r2rtR (15) 

whereas the norm of IWt) decreases, 

(tP t ItP~ (t) ) ~- e -~,(r- z)2 er2~tL (16) 
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with a rate depending on the squared difference of the eigenvalues. Conse- 
quently, the associated (normalized) state vector ]VB(t)) of equation (12), 
subject to the particular Brownian function of B(t) ~ 2r~t, is driven into the 
eigenmanifold Mr corresponding to the eigenvalue r of A with probability 
approaching IRI 2 as the 'tails' in the initial superposition of the two packets 
are exponentially reduced according to exp[ - y t ( r  - l)2]. In fact, it is easy 
to see from equations (15) and (16) that the ratio of the unnormalized 
squared norms of the two packets is 

l(Wt IV, (t))12 ,,~ _ _ zrt~r -o~ I L 12 (17) 
I<VrlvB(t)>l z - ~  IR[ = 

A similar relation holds in the case when the stochastic variable B(t) takes 
a value near 21yt. 

This picture makes apparent that the determination of a specific 
measurement-outcome in the GRWP theory is achieved through a partic- 
ular realization of the Brownian process. In the above example, for 
instance, B(t) generates a sort of Brownian motion for the state vector, so 
that lVB(t)) undergoes a diffusion process with two possible 'drifts' corre- 
sponding to two incompatible macroscopic situations ('right' and 'left' 
pointer readings). I t  is the choice of the drift, randomly made with 
probability weights (almost) reproducing the quantum mechanical statis- 
tics, that drives the state vector into a particular 'pointer reading' eigen- 
state, and the further stochasticity plays no significant role. 

However, the GRWP dynamical reduction theory presents an element 
of inconsistency with respect to a standard criterion of adequacy imposed 
on any theory of measurement, namely, that theoretical measurement times 
must approximate as closely as possible to actual measurement times. The 
embarrassing result obtained by the CSL model is that it requires the 
measurement to be arbitrarily long in duration. It can be immediately seen 
from equation (17) that its right-hand side tends to zero, and therefore the 
norm of the packet [Vr) becomes dominant, when t is sut~ciently large 
(t ~> ~-  ~). In the two-wave-packet system we examined above, the initially 
superposed state vector (I 1) can be driven by the CSL reduction dynamics 
into a 'fixed pointer position,' that is to say, either into the manifold M~ or 
Mr, only in the unattainable mathematical limit t ~ ~ .  

For any finite time t, no one of the packets evolved from this initial 
superposition can be identified with an exact eigenstate of the pointer's 
position observable. This is a direct consequence of the model's stochastic 
(white noise) assumptions (multiplication of the state vector by tiny 
Gaussian random processes), according to which for all values of B(t) 
which have an overwhelming probability to occur [cf. equation (14)], the 
norm of the corresponding dominant (normalized) state vector never 
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grows to unity for all finite times. For instance, when B(t) fluctuates 
around the value 2r),t 

I<vr 1%(0 >N 1= -- tRI2/[IRI = + ILl e -2r,(r-,)21 (18) 

the squared amplitude approaches the value 1 exponentially with time, so 
the associated state vector will always have a nonzero amplitude interfering 
with that of the t~Pt ) component which decays to 0 for t ~ ~ .  Hence each 
state vector in the ensemble remains always in a superposition whose 
existence prevents one from asserting (contrary to macroscopic experience) 
that the pointer occupies a definite position in space. 

The indefiniteness of the pointer's position is also suggested on generic 
physical grounds by the fact that the GRWP model, due to the appearance 
of the non-Hamiltonian terms in the modified evolution equation (3), 
implies a violation of energy conservation. The repeated application of the 
localization processes will squeeze the Schrfdinger spatial development of 
a wave packet and thus increase the system's energy. The result is a 
continuous gain in energy by macroscopic bodies, which, although it is so 
small as to be practically undetectable (Ghirardi and Rimini, 1990), is 
nonetheless an undesirable feature in a fundamental theory--the connec- 
tion between symmetry relations of space and time, invariance principles, 
and conservation laws breaks down--and with respect to the measure- 
ment, it prevents in principle the establishment of a final (pointer-reading) 
equilibrium state. 

Both the persistence of the superposed 'tails' and the incompatibility 
of the spontaneous reduction mechanism with the attainment of equi- 
librium suggest that within the GRWP picture the objectification process of 
a measurement, i.e., the emergence of a definite outcome, never takes place 
( t  = 

The implication is that if one wishes to attribute objective properties to 
individual systems in finite time intervals (normally specified by the reac- 
tion time of the apparatus at hand), one has to accept, as GRWP do, that 
the 'outcome r' has been objectively realized even when I<vrl%(t)>l 2 is 
not exactly equal to 1 but significantly close to it. 

We take the view, however, that a satisfactory way for restoring the 
concept of independent reality within the dynamical reduction program 
would be, instead of adopting an imprecise correspondence between theo- 
retical elements and results of observations, to consider the possibility of a 
more realistic (than white noise) stochastic source which may lead to 

4Earlier nonlinear state vector reduction models did not suffer this consequence, by achieving 
finite reduction times (Pearle, 1976), but did suffer the prediction of supeduminal communi- 
cation. 
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complete state vector reduction in characteristic measurement times. The 
realization of the former possibility, however mathematically difficult, is 
not impossible and Pearle (1993) sketches an approach by means of which 
this aim might be achieved. No definite conclusion has been reached, 
however, and further work seems to be necessary if the GRWP model is to 
be physically generalized. 

4. COLLAPSE PARAMETERS AND THEIR CONSEQUENCES 

Admittedly, the model of GRWP proposes a new fundamental 
dynamics for the Schr6dinger evolution, which aims at transforming 
"quantum mechanics into a stochastic mechanics in phase space exhibit- 
i ng . . ,  classical features" (Ghirardi et al., 1986, p. 485). Generally speak- 
ing, attempts for the modification of standard quantum mechanics face the 
task of convincing skeptics that the Schr6dinger equation, despite its deep 
mathematical beauty and unprecedented degree of confirmation, is not 
absolutely valid. In the GRWP case, this problem takes the particular form 
of providing a physical motivation for the introduction of stochastic 
spontaneous localizations at a fundamental level of description for what 
may otherwise appear to be an ad hoc modification of the basic evolution 
of the wave function. 

The GRWP model plainly accepts the ordinary interpretation of 
the wave function as providing the most accurate description of a 
quantum system. No extra variables are added therefore to the state 
vector, which remains the only state variable. Extra terms are added, 
however, to the usual Hamiltonian dynamics. In the modified Schr6dinger 
evolution the state vector interacts with new physical variables described 
by white noise stochastic processes. As mentioned, it is these diffusion 
processes which guide probabilistically the state vector into a particular 
'pointer-reading' eigenstate. The implication is that probabilistic behavior 
in the GRWP picture is not exclusively associated with the act of mea- 
surement. It is incorporated in the evolution principle of the theory in the 
form of random spontaneous localizations (jumps). However, no explana- 
tion is given as to how randomness emerges at the quantum level of 
description and consequently the wave function is assigned a role in the 
stochastic behavior of something still to be determined. The stochastic 
terms in the evolution equation--held responsible for the occurrence of 
the spontaneous localizations of the wave function--must be identified 
with the operation of some physical mechanism [instead of bringing them 
out of a hat just like that (Bell, 1989)] if the dynamical reduction program 
is to stand in its own right. Under the present regime, it seems that the 
GRWP stochastic dynamics requires recourse to some external physical 
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input in order to account for the definiteness of the world at the macro- 
scopic level. Such an input might be provided by connecting the reduction 
mechanism to quantum gravity, as has been suggested in the literature (cf. 
Diosi, 1992), although novel problems in relation to energy nonconserva- 
tion may arise. 5 

Appeal to such a physical or otherwise mathematical input is inti- 
mately connected with the empirical adequacy of  the new theory. The 
GRWP modified dynamics captures the empirical content of  standard 
quantum mechanics in all cases in which the latter has so far been 
confirmed experimentally, through a careful choice of the numerical values 
of  the two new parameters a and 2 [or ? = 2(a/4rc)-3/2] appearing in the 
model. Recall that the parameter 2 = 10-16sec -1 refers to the mean 
frequency of  the localization process of  a single particle, the parameter a is 
related to the accuracy of  the process, with the value 1/x/Ca = 10 -5 cm 
determining a new fundamental length making specific the quantum action 
at a distance (transition from quantum to classical behavior), whereas the 
other parameter 7 = 10-3~ cm3 sec-l  in the continuous version expresses 
the strength of  the statistical correlations among the white noise functions 
in the evolution equation. 

It is understood, however, that the values of  these quanti t ies--quanti-  
ties which deserve to be called constants of  nature if the G RW P  dynamics 
is taken as describing fundamental physical processes--are not to be 
determined merely by requiring consistency with known data (essentially 
by minimizing unpleasant physical implications concerning the mean en- 
ergy increase or the dissociation probability of atoms), but instead should 
be determined experimentally with a high degree of  accuracy. For  example, 
Zeilinger (1986, p. 23), in testing possible deviations of  the state vector 
evolution from the unitarity of  the Schrrdinger equation, has obtained as 
a lower limit for the spontaneous reduction time in the case of  a two-slit 
neutron interference pattern, T > 4 sec, provided that the maximum possi- 
ble interference contrast is experimentally used. Since the GRWP model 
suggests a characteristic reduction time of  z -  1016 sec for a microscopic 
system, an improvement by a factor of  10 ~5 (!) is needed in the precision of  
this experiment to become sensitive to the numerical choice made for the 

5Another possibility, perhaps also reducible to gravity, is the consideration of the often 
neglected system-environment interaction. On this basis, Joos and Zeh (1985) derived for the 
statistical operator of evolution a Markovian 'master equation' of the It6 type leading to 
destruction of macroscopic coherence. The density-matrix formalism does not, however, 
allow one to derive classical states at the level of particle trajectories without involving 
additional assumptions~ Nevertheless, Primas (1990) has shown, through the consideration of 
nonlinear feedback effects, how the environment-induced reduction can be extended to the 
state vector level of description also. 
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constants a and 2. This highlights the fact that the prospects of neutron 
interference experiments that would actually test the GRWP theory being 
performed in the future are negligible. 6 

Furthermore, it is worthy to note that at the methodological-theoreti- 
cal level, constants entering physical laws--laws which are applicable in 
principle to any physical phenomenon--cannot be taken merely as fixed 
quantities with the sole purpose of facilitating calculations or achieving 
reductions of wave packets, as in the GRWP case. On the contrary, their 
epistemological status plays a conceptual role bearing witness to the 
development of physical science in general. 7 A common example is Planck's 
constant h of the quantized action, which not only serves as a 'concept 
synthesizer' (for instance, the relation E = hco leads to the idea of wave- 
particle duality in standard quantum mechanics and further on to Bohr's 
philosophy of complementarity), but also, through the interelations among 
the various physical concepts within the theoretical framework (e.g., 
p = hk,  L = hm,  etc.), it can be used as a conceptual tool for building up 
the new theory. However, no such link of conceptual arrays can be found 
in the model of GRWP. The two new fixed quantities operate simply as 
numerical parameters whose suggested values were chosen with an eye to 
avoiding a contradiction for all intents and purposes with the quantum 
mechanical predictions for microscopic objects. 

Naturally, one would expect that a systematic and physically moti- 
vated development of stochastic quantum dynamics should be related to 
standard Hamiltonian dynamics through some limiting principle which 
would resemble the 'correspondence principle' relating quantum to classical 
mechanics. We emphasize in this respect that the limit y ~ 0 in which the 
modified dynamics goes into the usual Schr6dinger evolution s would not 
do. First, this limiting process is completely circular, bringing one back to 
the point of departure, that is, the standard quantum dynamics; one posits 
stochasticity in the wave function to achieve state vector reduction and 
then arbitrarily removes it to recover the 'Hamiltonian limit.' The vanish- 

6Considerations about the experitnental detection of GRWP-type deeorrelating effects on a 
SQUID operating in the macroscopic domain result in the same conclusion (Rae, 1990; 
Gallis and Fleming, 1990). 

7The whole structure of physics can be parametrized by the three fundamental constants G, c, 
and h, referring, respectively to the three fundamental theories: Newtonian gravity, special 
relativity, and quantum mechanics; whereas pair combinations of them may be taken to 
correspond to the partially unified theories of Einstein's general relativity (G-c),  Dirac's 
relativistic quantum mechanics (e-h), and modern quantum cosmology (G-h), or even to a 
future, fully unified theory for (G-e -h ) .  One may therefore legitimately wonder about the 
association of the GRWP parametrization ( a -2 -h )  with the rest of physics. 

8This is immediately apparent at the formal mathematical level if we rewrite equation (3) in 
the language of statistical operators, i.e., dQ/dt ~ - i [H,  Q] - YS d3x [A(x), [A(x), Q]]. 
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ing of ? (or 2) is in no way sufficient to guarantee the physical relevance of 
the limiting theory. If one is to study the logic of the possible limits of a 
theory, one must start from this theory itself, as expressed within its 
autonomous system of concepts. In other words, the GRWP theory needs 
an argument for why the universal character of the stochastic evolution 
fades out for systems commonly governed by Hamiltonian dynamics. 
Second, the limit of a constant to zero is never realized: neither ? nor h is 
actually zero. Such a limiting process is, at best, physically obtained when 
the ratios of certain physical quantities are small (or large) in comparison 
to the constant which relates the two quantities. For instance, the quantum 
behavior of a system is considered to be typically approximated by classical 
particle mechanics when the width of the wave packet is actually large in 
comparison to the wavelength. It is the relative significance of these two 
factors with respect to Planck's constant which gives rise to a physically 
permissible approach to the classical limit. However, the ? (or 2) parame- 
ter, as already mentioned, does not enjoy any such interrelational status 
within the GRWP context. It has been put in by hand from outside the 
theory to import the right kind of stochasticity into the evolution of the 
wave function for achieving state vector reduction without appreciably 
disturbing the quantum mechanical statistics. As things stand, it appears 
that the deterministic Schr6dinger dynamics and the stochastic localization 
(reduction) dynamics, rather than being related by some guiding physical 
principle, coexist by decree in the equation of motion. 9 

A further difficulty, associated also with the arbitrariness of the collapse 
parameters, concerns the assumption about the universal character of the 
localization process according to which, for a system of N particles, the 
localization occurs "individually for each constituent of the many-particle 
system" (Ghirardi, et al., 1986, p. 477). In the frame of quantum mechanics 
this assumption seems to be dubious at least in two respects if it is to acquire 
meaning beyond a pragmatic approximate description. For, first, the wave 
function of an N-body system does not in general define its individual parts, 
and, second, the question of what is a part of a complex system can only 
be given a contextual answer. For instance, in a many-particle system, are 
the parts the molecules, atoms, nucleons, or even quarks or partons? The 
level at which the spontaneous localization process is supposed to occur is 
left unspecified and in any case the parameter ? (or 2) should continually vary 
in magnitude according to the kind of particles under consideration if 
agreement with quantum mechanical predictions is to be maintained. 

9Again, a possible connection of the introduced stochasticity to the rest of physics (e.g., 
gravity, cosmic background radiation, electromagnetism) might pave the way toward a 
physical generalization of the GRWP theory. 
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5. FINAL REMARKS 

In our view models with spontaneous localization of the state vector 
are useful to provide an effective phenomenological way of saving the 
concept of independent reality, that macroscopic objects possess objective 
local properties not affected by the long-distance coherence of far-away 
states. 

We do not think, however, that they might serve as a fundamental 
approach to the quantum theory of measurement. As we showed, the 
magnitude of problems connected with wave packet reduction is more 
complex than can be expressed by the addition of a stochastic term in the 
Schr6dinger equation. The authors, by doing so, have transferred the 
apparent duality in the axiomatic structure of quantum mechanics into a 
single dynamical law which, however, exhibits a dual character still to be 
explained. 

A related, but more general, objection to the GRWP modification of 
the Schr6dinger equation is that it destroys the fundamentality of the 
present structure of quantum dynamics as it finds expression in universal 
physical principles like Lorentz invariance and laws of conservation. 
Clearly, a stochastic modification of the fundamental quantum dynamics 
will not be ultimately acceptable unless it leads to novel consequences 
which can be experimentally confirmed. 

In the absence of any feasible experimental tests that would actually 
confirm or falsify the GRWP postulate of stochastic spontaneous localiza- 
tion of the wave function, acceptance of this point of view can only be 
based on purely conceptual (philosophical) considerations. In this regard, 
the model of GRWP should be commended for the fact that it does provide 
an intuitive picture of how quantum events may come about by accom- 
modating our knowledge of microprocesses into a coherent quantum 
ontology that generally allows a macroobjective description of natural 
phenomena. 
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